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Solution Methods 

• Solver: OVERFLOW 2.2e/2.2f 

– RHS: 3rd-order accurate Roe upwind 

– LHS: Scalar pentadiagonal approximate factorization 

– Low-Mach preconditioning 

– Recommended artificial dissipation 

– Grid sequencing and multigrid acceleration 

– Non-time accurate solution 

• Convergence assumed when force/moment limit cycles are reached 

 

• Grids: Committee-provided structured overset grids (series E) 

– Generated by Boeing Huntington Beach 

 

• Hardware 

– DoD HPC machines (AFRL and Navy DSRC Machines) 
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Solution Methods 

• Turbulence Modeling 

– SA (Cases 1, 2a, and 2b) 

– SA-RC (Case 1 – Medium, 2a, and 2b) 

– SA-ñ (Transition – 2c) 

– SA-QCR2000-ñ (Transition – 2c) 

 

• Turbulence model studies limited by time and available computing 
resources 

– Originally planned for full studies of SA, SA-RC, SST, and SST-RC for Cases 1, 
2a, and 2b 

– Also planned to compare behavior of Langtry-Menter model (both original 
and applied to the Spalart-Allmaras model) with the Penn State amplification 
factor transport model 
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Grid Convergence Study 
(Case 1) 
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Force/Moment Convergence Behavior 
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Grid Convergence , R = 15.1 Million : Lift Curve 
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Grid Convergence, R = 15.1 Million: Drag Polar 
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Grid Convergence , R = 15.1 Million : Profile Drag Polar 
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Grid Convergence , R = 15.1 Million : Pitching Moment 
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High Re Grid Convergence Study 
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High Re Grid Convergence Study 
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High Re Grid Convergence Study 
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RC Correction, No Tracks, R = 15.1 Million 
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Effect of Slat Tracks and Flap Track Fairings 
(Cases 1 and 2b) 
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Tracks/Fairings Effects, R = 15.1 Million: Lift Curve 
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Tracks/Fairings Effects, R = 15.1 Million: Drag Polar 
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Tracks/Fairings Effects, R = 15.1 Million: Pitching Moment 
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Effect of Slat and Flap Tracks, R = 15.1 Million 
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Effect of Slat and Flap Tracks, R = 15.1 Million 
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Reynolds Number Study 
(Cases 2a and 2b) 



Applied Aerodynamics Research Group 

HiLiftPW-2 

Reynolds Number Study: Lift Curve 
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Reynolds Number Study: Drag Polar 
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Reynolds Number Study: Pitching Moment 
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Effect of RC Correction, Tracks/Fairings On, R = 1.35 Million 
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Effect of RC Correction, Tracks/Fairings On, R = 1.35 Million 

 

25 

R = 1.35e6, α = 21° 

SA 

SA-RC 
Cp contours 



Applied Aerodynamics Research Group 

HiLiftPW-2 

 

26 

Transitional Flow Effects 
(Case 2c) 
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Transition Modeling 

• Amplification Factor Transport Equation (AIAA 2013-0253) 

 

 

 

– Predictive model based on the  approximate envelope method of Drela and 
Giles 

• Models Tollmien-Schlichting transition 

– Uses local flow variables and wall distance to estimate the boundary-layer 
shape factor 

• Parallelizable (no integration paths) 

• Requires free-stream conditions to be available at every grid point 

– Insensitive to domain size 

• Transition criterion set critical amplification factor 

– Shows improvement over local-correlation methods for predicting flow 
around airfoils (including multi-element airfoils) 
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Transition Modeling 

• Applied to the Spalart-Allmaras eddy-viscosity model 

 

 

 

– where the ft2 function is modified to 

 

 

 

 with ct3 = 1.2 and ct4 = 0.05 

 

• Ncrit set to 8.15 for Case 2c 

– Based on reported B-LSWT turbulence levels and Mack’s relationship 
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Quadratic Constitutive Relation (QCR) 

• Non-linear extension to the Boussinesq eddy-viscosity hypothesis 
proposed by Spalart 

– Original (QCR2000) version implemented into OVERFLOW 2.2f 

 

 

– where cnl1 = 0.3 and 

 

 

 

 

 

• Higher-order terms demonstrated to improve predictions for corner flows 
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Quadratic Constitutive Relation (QCR) 

• SA-QCR predicts significantly reduced SOB separation on the CRM wing 
used for DPW-V 

 

 

 

 

 

 

 

 

 

 

• Of great interest for HiLiftPW-2 simulations, but only applied to 
transitional data due to time constraints 

30 

From Sclafani, et al. (AIAA 2013-0048) 



Applied Aerodynamics Research Group 

HiLiftPW-2 

Transition Study, R = 1.35 Million: Lift Curve 
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Transition Study, R = 1.35 Million : Drag Polar 
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Transition Study, R = 1.35 Million : Pitching Moment 
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Surface Streamlines vs. QCR/Transition: α = 18.5° 
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Experiment shows 

separation onset on 

the main element at 

~50% and ~75% 

semispan locations 

OVERFLOW predicts 

onset of separation at 

75%, but not at 50%. 

 

 Separation on flap 

appears to be more 

prominent Cf contours 
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Surface Streamlines vs. QCR/Transition : α = 18.5° 
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Surface Streamlines vs. QCR/Transition : α = 18.5° 
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Surface Streamlines vs. QCR/Transition : α = 21° 
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Surface Streamlines vs. QCR/Transition: α = 21° 
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Surface Streamlines vs. QCR/Transition : α = 21° 

 

39 

Contamination occurs on the flap 

as well near the root 

Preliminary studies indicate it 

being a result of excessive eddy-

viscosity production 

 

More investigation required into 

this behavior 
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Some Conclusions and Future Work 

• Behavior dominated by trailing-edge separation 

– Shift in zero-lift angle of attack 

– Relatively soft stall behavior 

– Choice of turbulence model has strong influence 

 

• OVERFLOW failed to predict spanwise location of upper-surface 
separation wedge  

– Experiment showed η ≈ 50% 

– OVERFLOW predicted η ≈ 75% 

 

• Transition modeling had little effect on the predictions 

– Slight reduction in profile drag 

– Not enough to reconcile CFD predictions with experiment 

– More transition models need to be explored! 
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Thank you for your time 
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Questions? 
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… 
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 No Multigrid 

Multigrid 

Without multigrid 

acceleration, solution 

locally destabilized on 

the medium grid but 

produced reasonable 

forces/moments 

Multigrid stabilized the 

solution, but barely 

affected the lift, drag, 

and pitching moment 

in comparison 

Density contours, R = 15.1e6, α = 18.5° 


